Vibrational coupling in plasmonic molecules.
نویسندگان
چکیده
Plasmon hybridization theory, inspired by molecular orbital theory, has been extremely successful in describing the near-field coupling in clusters of plasmonic nanoparticles, also known as plasmonic molecules. However, the vibrational modes of plasmonic molecules have been virtually unexplored. By designing precisely configured plasmonic molecules of varying complexity and probing them at the individual plasmonic molecule level, intramolecular coupling of acoustic modes, mediated by the underlying substrate, is observed. The strength of this coupling can be manipulated through the configuration of the plasmonic molecules. Surprisingly, classical continuum elastic theory fails to account for the experimental trends, which are well described by a simple coupled oscillator picture that assumes the vibrational coupling is mediated by coherent phonons with low energies. These findings provide a route to the systematic optical control of the gigahertz response of metallic nanostructures, opening the door to new optomechanical device strategies.
منابع مشابه
Strong coupling between mid-infrared localized plasmons and phonons.
We numerically and experimentally demonstrate strong coupling between the mid-infrared localized surface plasmon resonances supported by plasmonic metamaterials and the phonon vibrational resonances of polymethyl methacrylate (PMMA) molecules. The plasmonic resonances are tuned across the phonon resonance of PMMA molecules at 52 THz to observe the strong coupling, which manifests itself as an a...
متن کاملResonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection.
A novel resonant mechanism involving the interference of a broadband plasmon with the narrowband vibration from molecules is presented. With the use of this concept, we demonstrate experimentally the enormous enhancement of the vibrational signals from less than one attomol of molecules on individual gold nanowires, tailored to act as plasmonic nanoantennas in the infrared. By detuning the reso...
متن کاملFano-like resonances arising from long-lived molecule-plasmon interactions in colloidal nanoantennas.
We examine ultrafast dynamics in a coupled molecule-plasmon system. Using a new ultrafast Raman technique called surface enhanced-femtosecond stimulated Raman spectroscopy (SE-FSRS), we prove that plasmonic nanoparticles and adsorbed molecules are coupled by the appearance of Fano-like lineshapes, which arise from the interaction of narrowband vibrational coherences and the broadband plasmon re...
متن کاملUltra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays.
Infrared absorption spectroscopy enabling direct access to vibrational fingerprints of the molecular structure is a powerful method for functional studies of bio-molecules. Although the intrinsic absorption cross-sections of IR active modes of proteins are nearly 10 orders of magnitude larger than the corresponding Raman cross-sections, they are still small compared to that of fluorescence-labe...
متن کاملDeposition of Organic Molecules on Gold Nanoantennas for Sensing
The deposition of organic molecules on gold nanoantennas is reported through chemisorption for sensing in the midinfrared (mid-IR) spectral range. The specific nanostructures are gold asymmetric-split ring resonators (A-SRRs) based on circular-geometry with two different ‘arc’ lengths. The plasmonic resonant coupling technique was used to match the vibrational responses of the targeted molecule...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 44 شماره
صفحات -
تاریخ انتشار 2017